



#### Where is the Watershed?



# Á

#### Garden Creek Watershed

#### Land use





# Why Are We Here?

- To discuss TMDLs for Garden Creek
  - Total Maximum Daily Load
  - It is how much pollutant can enter the stream and have the stream meet the water quality standards





# Why Are We Here?

#### Two Problems!



#1 Bacteria

#2 Aquatic Life





The condition of the stream is harmful to aquatic life



# Where is the Impairment?





#### What are the Sources of Bacteria?

Permitted discharges

Wastewater treatment facilities

Human

Straight Pipes

Pets

Wildlife





### What is harming the Aquatic Life?



Organic Matter

**Nutrients** 

otal Dissolved Solids / Conductivity



#### **Endpoint Determination**



- E. coli Bacteria Garden Creek
  - Two standards
    - 126 cfu/100mL geometric mean
    - 235 cfu/100mL instantaneous sample
  - Bacteria Modeling
    - Average daily streamflow and bacteria



#### **Endpoint Determination**



#### Total Chloride

- 230 mg/L based on a 4 day average not to be exceeded more than once in a 3 year period.
- Total Chloride Modeling
  - The water quality standard is the goal for the impaired stream.

#### Total Dissolved Solids (TDS)

- Reference Watershed Approach to endpoint selection
  - Dismal Creek in Buchanan, County, VA
- TDS Modeling
  - The 90<sup>th</sup> percentile of observed TDS in the reference stream is the goal for the impaired stream (373 mg/L).



#### How do we Determine the TMDL?



Watershed data





### E. coli Load Reduction Scenarios

|                     |                      | Human   | Human |  |
|---------------------|----------------------|---------|-------|--|
|                     | <b>NPS Livestock</b> | Direct  | Land  |  |
| Wildlife Land Based | and Pet              | Deposit | Based |  |

Active Mining.

| Run#     | Wildlife<br>Direct | Active Gas Wells,<br>AML, Barren,<br>Forest, Grasslands,<br>Developed, Roads | Residential | Straight<br>Pipes | Failing<br>Septics | GM %<br>vio | SS % vio |
|----------|--------------------|------------------------------------------------------------------------------|-------------|-------------------|--------------------|-------------|----------|
| Existing | 0                  | 0                                                                            | 0           | 0                 | 0                  | 100         | 50.36    |
| 5        | 0                  | 10                                                                           | 99          | 100               | 100                | 5.56        | 10.86    |
| 8        | 0                  | 70                                                                           | 99          | 100               | 100                | 0           | 0        |



#### What *E. coli* reductions are required?







0% (Direct) 100%

70%

(Residential = 99.4%)



#### How do we Determine the TMDL?



Watershed data





# What Chloride reductions are required?





70 % Reduction





5% Reduction



#### What TDS reductions are required?





77 %
Reduction





45% Reduction



# Chloride Concentrations at 6AGAR000.16, July 1992 – December 2006





# TDS Concentrations at 6AGAR000.16, July 1992 – December 2006





#### Benthic VACI Scores for 6AGAR000.16, April 11, 1996 – October 2, 2006





- Public Review
- Submit to EPA
- State Approval
- Implementation Plan Development
- Implementation



#### Garden Creek TMDL Contacts

- Î
- Department of Environmental Quality
  - Shelley Williams, TMDL Project Coordinator
    - 276-676-4845
- Department of Mines, Minerals, and Energy; Division of Mine Land Reclamation
  - Joey O'Quinn, TMDL Project Coordinator
    - 276-523-8151
- Department of Conservation and Recreation
  - Theresa Carter, TMDL/Watershed Field Coordinator
    - 276-676-5418
- MapTech, Inc.

Rod Bodkin

- 540-879-9294
- Civil & Environmental Consultants, Inc.

Dr. Jim Mudge

800-365-2324





### Bacterial Source Tracking (BST)

- Determines bacteria source
  - human
  - pet
  - livestock
  - wildlife





# What is the Predominant Source?

| Station     | Stream       | Wildlife | Human | Livestock | Pet |
|-------------|--------------|----------|-------|-----------|-----|
| 6AGAR000.16 | Garden Creek | 59%      | 24%   | 6%        | 10% |
|             | Right Fork   |          |       |           |     |
| 6AGRF000.11 | Garden Creek | 36%      | 46%   | 10%       | 8%  |



#### PERMITTED DISCHARGES





#### DEQ BENTHIC MONITORING SITES





## Implementation Plans in the Shenandoah Valley

- North River (Lower Dry River, Muddy Creek):
   2001
- Cooks Creek and Blacks Run: 2006



Jan-00

Jan-02

Jan-04

Jan-06

Jan-96

Jan-94

Jan-98

# —AQUATIC LIFE TMDLs

| Chloride                   | <b>Existing</b> | Allocated |
|----------------------------|-----------------|-----------|
| <b>Land Based Indirect</b> | 6.58E+05        | 6.25E+05  |
| <b>Direct Loads</b>        | 1.18E+06        | 3.57E+05  |
|                            |                 |           |
|                            | 1.84E+06        | 9.82E+05  |

| TDS                        | <b>Existing</b> | Allocated |
|----------------------------|-----------------|-----------|
| <b>Land Based Indirect</b> | 4.31E+06        | 2.39E+06  |
| <b>Direct Loads</b>        | 2.00E+06        | 4.62E+05  |
|                            |                 |           |
|                            | 6.31E+06        | 2.85E+06  |